Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 185(12): 2086-2102.e22, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: covidwho-2293192

RESUMEN

Across biological scales, gene-regulatory networks employ autorepression (negative feedback) to maintain homeostasis and minimize failure from aberrant expression. Here, we present a proof of concept that disrupting transcriptional negative feedback dysregulates viral gene expression to therapeutically inhibit replication and confers a high evolutionary barrier to resistance. We find that nucleic-acid decoys mimicking cis-regulatory sites act as "feedback disruptors," break homeostasis, and increase viral transcription factors to cytotoxic levels (termed "open-loop lethality"). Feedback disruptors against herpesviruses reduced viral replication >2-logs without activating innate immunity, showed sub-nM IC50, synergized with standard-of-care antivirals, and inhibited virus replication in mice. In contrast to approved antivirals where resistance rapidly emerged, no feedback-disruptor escape mutants evolved in long-term cultures. For SARS-CoV-2, disruption of a putative feedback circuit also generated open-loop lethality, reducing viral titers by >1-log. These results demonstrate that generating open-loop lethality, via negative-feedback disruption, may yield a class of antimicrobials with a high genetic barrier to resistance.


Asunto(s)
Antivirales , Regulación Viral de la Expresión Génica/efectos de los fármacos , Animales , Antivirales/farmacología , Farmacorresistencia Viral , Redes Reguladoras de Genes/efectos de los fármacos , Ratones , SARS-CoV-2/efectos de los fármacos , Replicación Viral
2.
Comput Math Methods Med ; 2022: 9604456, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1704361

RESUMEN

OBJECTIVE: To investigate the potential pharmacological value of extracts from honeysuckle on patients with mild coronavirus disease 2019 (COVID-19) infection. METHODS: The active components and targets of honeysuckle were screened by Traditional Chinese Medicine Database and Analysis Platform (TCMSP). SwissADME and pkCSM databases predict pharmacokinetics of ingredients. The Gene Expression Omnibus (GEO) database collected transcriptome data for mild COVID-19. Data quality control, differentially expressed gene (DEG) identification, enrichment analysis, and correlation analysis were implemented by R toolkit. CIBERSORT evaluated the infiltration of 22 immune cells. RESULTS: The seven active ingredients of honeysuckle had good oral absorption and medicinal properties. Both the active ingredient targets of honeysuckle and differentially expressed genes of mild COVID-19 were significantly enriched in immune signaling pathways. There were five overlapping immunosignature genes, among which RELA and MAP3K7 expressions were statistically significant (P < 0.05). Finally, immune cell infiltration and correlation analysis showed that RELA, MAP3K7, and natural killer (NK) cell are with highly positive correlation and highly negatively correlated with hematopoietic stem cells. CONCLUSION: Our analysis suggested that honeysuckle extract had a safe and effective protective effect against mild COVID-19 by regulating a complex molecular network. The main mechanism was related to the proportion of infiltration between NK cells and hematopoietic stem cells.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos/uso terapéutico , Lonicera , Farmacología en Red , Fitoterapia , SARS-CoV-2 , Antivirales/química , Antivirales/farmacocinética , Antivirales/uso terapéutico , COVID-19/genética , COVID-19/inmunología , Biología Computacional , Bases de Datos Farmacéuticas/estadística & datos numéricos , Evaluación Preclínica de Medicamentos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacocinética , Expresión Génica/efectos de los fármacos , Ontología de Genes , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/inmunología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/inmunología , Humanos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Lonicera/química , Medicina Tradicional China , Pandemias , SARS-CoV-2/efectos de los fármacos
3.
BMC Med Genomics ; 14(1): 226, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1542114

RESUMEN

BACKGROUND: Higher mortality of COVID-19 patients with lung disease is a formidable challenge for the health care system. Genetic association between COVID-19 and various lung disorders must be understood to comprehend the molecular basis of comorbidity and accelerate drug development. METHODS: Lungs tissue-specific neighborhood network of human targets of SARS-CoV-2 was constructed. This network was integrated with lung diseases to build a disease-gene and disease-disease association network. Network-based toolset was used to identify the overlapping disease modules and drug targets. The functional protein modules were identified using community detection algorithms and biological processes, and pathway enrichment analysis. RESULTS: In total, 141 lung diseases were linked to a neighborhood network of SARS-CoV-2 targets, and 59 lung diseases were found to be topologically overlapped with the COVID-19 module. Topological overlap with various lung disorders allows repurposing of drugs used for these disorders to hit the closely associated COVID-19 module. Further analysis showed that functional protein-protein interaction modules in the lungs, substantially hijacked by SARS-CoV-2, are connected to several lung disorders. FDA-approved targets in the hijacked protein modules were identified and that can be hit by exiting drugs to rescue these modules from virus possession. CONCLUSION: Lung diseases are clustered with COVID-19 in the same network vicinity, indicating the potential threat for patients with respiratory diseases after SARS-CoV-2 infection. Pathobiological similarities between lung diseases and COVID-19 and clinical evidence suggest that shared molecular features are the probable reason for comorbidity. Network-based drug repurposing approaches can be applied to improve the clinical conditions of COVID-19 patients.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/epidemiología , Reposicionamiento de Medicamentos , Enfermedades Pulmonares/epidemiología , Pandemias , SARS-CoV-2 , Algoritmos , Antivirales/uso terapéutico , COVID-19/genética , Comorbilidad , Descubrimiento de Drogas , Reposicionamiento de Medicamentos/métodos , Redes Reguladoras de Genes/efectos de los fármacos , Interacciones Microbiota-Huesped/efectos de los fármacos , Interacciones Microbiota-Huesped/genética , Humanos , Enfermedades Pulmonares/tratamiento farmacológico , Enfermedades Pulmonares/genética , Mapas de Interacción de Proteínas/efectos de los fármacos , Mapas de Interacción de Proteínas/genética , Biología de Sistemas
4.
Front Endocrinol (Lausanne) ; 12: 714909, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1497067

RESUMEN

Background: Clinically, evidence shows that uterine corpus endometrial carcinoma (UCEC) patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may have a higher death-rate. However, current anti-UCEC/coronavirus disease 2019 (COVID-19) treatment is lacking. Plumbagin (PLB), a pharmacologically active alkaloid, is an emerging anti-cancer inhibitor. Accordingly, the current report was designed to identify and characterize the anti-UCEC function and mechanism of PLB in the treatment of patients infected with SARS-CoV-2 via integrated in silico analysis. Methods: The clinical analyses of UCEC and COVID-19 in patients were conducted using online-accessible tools. Meanwhile, in silico methods including network pharmacology and biological molecular docking aimed to screen and characterize the anti-UCEC/COVID-19 functions, bio targets, and mechanisms of the action of PLB. Results: The bioinformatics data uncovered the clinical characteristics of UCEC patients infected with SARS-CoV-2, including specific genes, health risk, survival rate, and prognostic index. Network pharmacology findings disclosed that PLB-exerted anti-UCEC/COVID-19 effects were achieved through anti-proliferation, inducing cytotoxicity and apoptosis, anti-inflammation, immunomodulation, and modulation of some of the key molecular pathways associated with anti-inflammatory and immunomodulating actions. Following molecular docking analysis, in silico investigation helped identify the anti-UCEC/COVID-19 pharmacological bio targets of PLB, including mitogen-activated protein kinase 3 (MAPK3), tumor necrosis factor (TNF), and urokinase-type plasminogen activator (PLAU). Conclusions: Based on the present bioinformatic and in silico findings, the clinical characterization of UCEC/COVID-19 patients was revealed. The candidate, core bio targets, and molecular pathways of PLB action in the potential treatment of UCEC/COVID-19 were identified accordingly.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Carcinoma Endometrioide , Neoplasias Endometriales , Interacciones Huésped-Patógeno , Naftoquinonas/farmacología , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/complicaciones , COVID-19/diagnóstico , COVID-19/genética , Proteínas de Unión al Calcio/efectos de los fármacos , Proteínas de Unión al Calcio/metabolismo , Carcinoma Endometrioide/complicaciones , Carcinoma Endometrioide/diagnóstico , Carcinoma Endometrioide/tratamiento farmacológico , Carcinoma Endometrioide/genética , Biología Computacional , Ensayos de Selección de Medicamentos Antitumorales/métodos , Neoplasias Endometriales/complicaciones , Neoplasias Endometriales/diagnóstico , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Estudios de Asociación Genética , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Humanos , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Persona de Mediana Edad , Proteína Quinasa 3 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular/métodos , Naftoquinonas/uso terapéutico , Pronóstico , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Útero/efectos de los fármacos , Útero/metabolismo , Útero/patología , Útero/virología
5.
Sci Rep ; 11(1): 20687, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1475486

RESUMEN

This analysis presents a systematic evaluation of the extent of therapeutic opportunities that can be obtained from drug repurposing by connecting drug targets with disease genes. When using FDA-approved indications as a reference level we found that drug repurposing can offer an average of an 11-fold increase in disease coverage, with the maximum number of diseases covered per drug being increased from 134 to 167 after extending the drug targets with their high confidence first neighbors. Additionally, by network analysis to connect drugs to disease modules we found that drugs on average target 4 disease modules, yet the similarity between disease modules targeted by the same drug is generally low and the maximum number of disease modules targeted per drug increases from 158 to 229 when drug targets are neighbor-extended. Moreover, our results highlight that drug repurposing is more dependent on target proteins being shared between diseases than on polypharmacological properties of drugs. We apply our drug repurposing and network module analysis to COVID-19 and show that Fostamatinib is the drug with the highest module coverage.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos/métodos , Redes Reguladoras de Genes/efectos de los fármacos , Mapas de Interacción de Proteínas/genética , SARS-CoV-2 , Antivirales/farmacología , Teorema de Bayes , Biología Computacional/métodos , Sistemas de Liberación de Medicamentos , Descubrimiento de Drogas , Humanos , Polifarmacología , Mapeo de Interacción de Proteínas , Estados Unidos , United States Food and Drug Administration
6.
PLoS One ; 16(8): e0256141, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1362089

RESUMEN

SARS-CoV-2 requires serine protease, transmembrane serine protease 2 (TMPRSS2), and cysteine proteases, cathepsins B, L (CTSB/L) for entry into host cells. These host proteases activate the spike protein and enable SARS-CoV-2 entry. We herein performed genomic-guided gene set enrichment analysis (GSEA) to identify upstream regulatory elements altering the expression of TMPRSS2 and CTSB/L. Further, medicinal compounds were identified based on their effects on gene expression signatures of the modulators of TMPRSS2 and CTSB/L genes. Using this strategy, estradiol and retinoic acid have been identified as putative SARS-CoV-2 alleviation agents. Next, we analyzed drug-gene and gene-gene interaction networks using 809 human targets of SARS-CoV-2 proteins. The network results indicate that estradiol interacts with 370 (45%) and retinoic acid interacts with 251 (31%) human proteins. Interestingly, a combination of estradiol and retinoic acid interacts with 461 (56%) of human proteins, indicating the therapeutic benefits of drug combination therapy. Finally, molecular docking analysis suggests that both the drugs bind to TMPRSS2 and CTSL with the nanomolar to low micromolar affinity. The results suggest that these drugs can simultaneously target both the entry pathways of SARS-CoV-2 and thus can be considered as a potential treatment option for COVID-19.


Asunto(s)
Catepsina B/genética , Catepsina L/genética , Estradiol/farmacología , Genómica/métodos , SARS-CoV-2/fisiología , Serina Endopeptidasas/genética , Tretinoina/farmacología , Catepsina B/química , Catepsina L/química , Bases de Datos Genéticas , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Interacciones Huésped-Patógeno , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Conformación Proteica , Mapas de Interacción de Proteínas/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Internalización del Virus/efectos de los fármacos
7.
EBioMedicine ; 68: 103390, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-1267655

RESUMEN

BACKGROUND: Coronavirus Disease 2019 (Covid-19) continues to challenge the limits of our knowledge and our healthcare system. Here we sought to define the host immune response, a.k.a, the "cytokine storm" that has been implicated in fatal COVID-19 using an AI-based approach. METHOD: Over 45,000 transcriptomic datasets of viral pandemics were analyzed to extract a 166-gene signature using ACE2 as a 'seed' gene; ACE2 was rationalized because it encodes the receptor that facilitates the entry of SARS-CoV-2 (the virus that causes COVID-19) into host cells. An AI-based approach was used to explore the utility of the signature in navigating the uncharted territory of Covid-19, setting therapeutic goals, and finding therapeutic solutions. FINDINGS: The 166-gene signature was surprisingly conserved across all viral pandemics, including COVID-19, and a subset of 20-genes classified disease severity, inspiring the nomenclatures ViP and severe-ViP signatures, respectively. The ViP signatures pinpointed a paradoxical phenomenon wherein lung epithelial and myeloid cells mount an IL15 cytokine storm, and epithelial and NK cell senescence and apoptosis determine severity/fatality. Precise therapeutic goals could be formulated; these goals were met in high-dose SARS-CoV-2-challenged hamsters using either neutralizing antibodies that abrogate SARS-CoV-2•ACE2 engagement or a directly acting antiviral agent, EIDD-2801. IL15/IL15RA were elevated in the lungs of patients with fatal disease, and plasma levels of the cytokine prognosticated disease severity. INTERPRETATION: The ViP signatures provide a quantitative and qualitative framework for titrating the immune response in viral pandemics and may serve as a powerful unbiased tool to rapidly assess disease severity and vet candidate drugs. FUNDING: This work was supported by the National Institutes for Health (NIH) [grants CA151673 and GM138385 (to DS) and AI141630 (to P.G), DK107585-05S1 (SD) and AI155696 (to P.G, D.S and S.D), U19-AI142742 (to S. C, CCHI: Cooperative Centers for Human Immunology)]; Research Grants Program Office (RGPO) from the University of California Office of the President (UCOP) (R00RG2628 & R00RG2642 to P.G, D.S and S.D); the UC San Diego Sanford Stem Cell Clinical Center (to P.G, D.S and S.D); LJI Institutional Funds (to S.C); the VA San Diego Healthcare System Institutional funds (to L.C.A). GDK was supported through The American Association of Immunologists Intersect Fellowship Program for Computational Scientists and Immunologists. ONE SENTENCE SUMMARY: The host immune response in COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , Antivirales/administración & dosificación , COVID-19/genética , Perfilación de la Expresión Génica/métodos , Interleucina-15/genética , Receptores de Interleucina-15/genética , Virosis/genética , Animales , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/farmacología , Antivirales/farmacología , Inteligencia Artificial , Autopsia , COVID-19/inmunología , Cricetinae , Citidina/administración & dosificación , Citidina/análogos & derivados , Citidina/farmacología , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Redes Reguladoras de Genes/efectos de los fármacos , Marcadores Genéticos/efectos de los fármacos , Humanos , Hidroxilaminas/administración & dosificación , Hidroxilaminas/farmacología , Interleucina-15/sangre , Pulmón/inmunología , Mesocricetus , Pandemias , Receptores de Interleucina-15/sangre , Virosis/inmunología , Tratamiento Farmacológico de COVID-19
8.
Sci Rep ; 11(1): 10271, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: covidwho-1228271

RESUMEN

COVID-19 has currently become the biggest challenge in the world. There is still no specific medicine for COVID-19, which leaves a critical gap for the identification of new drug candidates for the disease. Recent studies have reported that the small-molecule enoxacin exerts an antiviral activity by enhancing the RNAi pathway. The aim of this study is to analyze if enoxacin can exert anti-SARS-CoV-2 effects. We exploit multiple computational tools and databases to examine (i) whether the RNAi mechanism, as the target pathway of enoxacin, could act on the SARS-CoV-2 genome, and (ii) microRNAs induced by enoxacin might directly silence viral components as well as the host cell proteins mediating the viral entry and replication. We find that the RNA genome of SARS-CoV-2 might be a suitable substrate for DICER activity. We also highlight several enoxacin-enhanced microRNAs which could target SARS-CoV-2 components, pro-inflammatory cytokines, host cell components facilitating viral replication, and transcription factors enriched in lung stem cells, thereby promoting their differentiation and lung regeneration. Finally, our analyses identify several enoxacin-targeted regulatory modules that were critically associated with exacerbation of the SARS-CoV-2 infection. Overall, our analysis suggests that enoxacin could be a promising candidate for COVID-19 treatment through enhancing the RNAi pathway.


Asunto(s)
Antibacterianos/farmacología , Tratamiento Farmacológico de COVID-19 , Enoxacino/farmacología , Interferencia de ARN/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , COVID-19/genética , Simulación por Computador , Descubrimiento de Drogas , Redes Reguladoras de Genes/efectos de los fármacos , Genómica , Humanos , MicroARNs/genética , SARS-CoV-2/genética
9.
Comb Chem High Throughput Screen ; 24(9): 1377-1394, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-902235

RESUMEN

OBJECTIVE: Shufeng Jiedu capsule (SFJDC) is a well-known Chinese patent drug that is recommended as a basic prescription and applied widely in the clinical treatment of COVID-19. However, the exact molecular mechanism of SFJDC remains unclear. The present study aims to determine the potential pharmacological mechanisms of SFJDC in the treatment of COVID-19 based on network pharmacology. METHODS: The network pharmacology-based strategy includes collection and analysis of active compounds and target genes, network construction, identification of key compounds and hub target genes, KEGG and GO enrichment, recognition and analysis of main modules, as well as molecule docking. RESULTS: A total of 214 active chemical compounds and 339 target genes of SFJDC were collected. Of note, 5 key compounds (ß -sitosterol, luteolin, kaempferol, quercetin, and stigmasterol) and 10 hub target genes (TP53, AKT1, NCOA1, EGFR, PRKCA, ANXA1, CTNNB1, NCOA2, RELA and FOS) were identified based on network analysis. The hub target genes mainly enriched in pathways including MAPK signaling pathway, PI3K-Akt signaling pathway and cAMP signaling pathway, which could be the underlying pharmacological mechanisms of SFJDC for treating COVID-19. Moreover, the key compounds had high binding activity with three typical target proteins including ACE2, 2OFZ, and 1SSK. CONCLUSION: By network pharmacology analysis, SFJDC was found to effectively improve immune function and reduce inflammatory responses based on its key compounds, hub target genes, and the relevant pathways. These findings may provide valuable evidence for explaining how SFJDC exerting the therapeutic effects on COVID-19, providing a holistic view for further clinical application.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Simulación por Computador , Redes Reguladoras de Genes/efectos de los fármacos , Marcación de Gen , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Unión Proteica , SARS-CoV-2/química , SARS-CoV-2/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
10.
Toxicol Appl Pharmacol ; 406: 115237, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: covidwho-752826

RESUMEN

Improvement of COVID-19 clinical condition was seen in studies where combination of antiretroviral drugs, lopinavir and ritonavir, as well as immunomodulant antimalaric, chloroquine/hydroxychloroquine together with the macrolide-type antibiotic, azithromycin, was used for patient's treatment. Although these drugs are "old", their pharmacological and toxicological profile in SARS-CoV-2 - infected patients are still unknown. Thus, by using in silico toxicogenomic data-mining approach, we aimed to assess both risks and benefits of the COVID-19 treatment with the most promising candidate drugs combinations: lopinavir/ritonavir and chloroquine/hydroxychloroquine + azithromycin. The Comparative Toxicogenomics Database (CTD; http://CTD.mdibl.org), Cytoscape software (https://cytoscape.org) and ToppGene Suite portal (https://toppgene.cchmc.org) served as a foundation in our research. Our results have demonstrated that lopinavir/ritonavir increased the expression of the genes involved in immune response and lipid metabolism (IL6, ICAM1, CCL2, TNF, APOA1, etc.). Chloroquine/hydroxychloroquine + azithromycin interacted with 6 genes (CCL2, CTSB, CXCL8, IL1B, IL6 and TNF), whereas chloroquine and azithromycin affected two additional genes (BCL2L1 and CYP3A4), which might be a reason behind a greater number of consequential diseases. In contrast to lopinavir/ritonavir, chloroquine/hydroxychloroquine + azithromycin downregulated the expression of TNF and IL6. As expected, inflammation, cardiotoxicity, and dyslipidaemias were revealed as the main risks of lopinavir/ritonavir treatment, while chloroquine/hydroxychloroquine + azithromycin therapy was additionally linked to gastrointestinal and skin diseases. According to our results, these drug combinations should be administrated with caution to patients suffering from cardiovascular problems, autoimmune diseases, or acquired and hereditary lipid disorders.


Asunto(s)
Betacoronavirus , Simulación por Computador , Minería de Datos/métodos , Toxicogenética/métodos , Antivirales/administración & dosificación , Antivirales/efectos adversos , Azitromicina/administración & dosificación , Azitromicina/efectos adversos , COVID-19 , Cloroquina/administración & dosificación , Cloroquina/efectos adversos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/genética , Bases de Datos Genéticas , Quimioterapia Combinada , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/genética , Humanos , Hidroxicloroquina/administración & dosificación , Hidroxicloroquina/efectos adversos , Lopinavir/administración & dosificación , Lopinavir/efectos adversos , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/genética , Ritonavir/administración & dosificación , Ritonavir/efectos adversos , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
11.
Comb Chem High Throughput Screen ; 24(2): 294-305, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-707518

RESUMEN

AIM AND OBJECTIVE: Maxingyigan (MXYG) decoction is a traditional Chinese medicine (TCM) prescription. However, how MXYG acts against coronavirus disease 2019 (COVID-19) is not known. We investigated the active ingredients and the therapeutic targets of MXYG decoction against COVID-19. METHODS: A network pharmacology strategy involving drug-likeness evaluation, prediction of oral bioavailability, network analyses, and virtual molecular docking was used to predict the mechanism of action of MXYG against COVID-19. RESULTS: Thirty-three core COVID-19-related targets were identified from 1023 gene targets through analyses of protein-protein interactions. Eighty-six active ingredients of MXYG decoction hit by 19 therapeutic targets were screened out by analyses of a compound-compound target network. Via network topology, three "hub" gene targets (interleukin (IL-6), caspase-3, IL-4) and three key components (quercetin, formononetin, luteolin) were recognized and verified by molecular docking. Compared with control compounds (ribavirin, arbidol), the docking score of quercetin to the IL-6 receptor was highest, with a score of 5. Furthermore, the scores of three key components to SARS-CoV-2 are large as 4, 5, and 5, respectively, which are even better than those of ribavirin at 3. Bioinformatics analyses revealed that MXYG could prevent and treat COVID-19 through anti-inflammatory and immunity-based actions involving activation of T cells, lymphocytes, and leukocytes, as well as cytokine-cytokine-receptor interaction, and chemokine signaling pathways. CONCLUSION: The hub genes of COVID-19 helped to reveal the underlying pathogenesis and therapeutic targets of COVID-19. This study represents the first report on the molecular mechanism of MXYG decoction against COVID-19.


Asunto(s)
Antiinflamatorios/farmacología , Tratamiento Farmacológico de COVID-19 , Inflamación/tratamiento farmacológico , COVID-19/complicaciones , COVID-19/genética , COVID-19/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Inflamación/etiología , Inflamación/genética , Inflamación/metabolismo , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida , Mapas de Interacción de Proteínas/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
12.
Eur Rev Med Pharmacol Sci ; 24(6): 3360-3384, 2020 03.
Artículo en Inglés | MEDLINE | ID: covidwho-48591

RESUMEN

Beginning in December 2019, coronavirus disease 2019 (COVID-19), due to 2019-nCoV infection, emerged in Wuhan and spread rapidly throughout China and even worldwide. Employing combined therapy of modern medicine and traditional Chinese medicine has been proposed, in which Ma Xing Shi Gan Decoction (MXSGD) was recommended as a basic prescription and applied widely in the clinical treatment of COVID-19. We investigated the underlying mechanism of MXSGD in treating COVID-19 utilizing the approaches of integrating network pharmacology. A total of 97 active ingredients of MXSGD were screened out, and 169 targets were predicted. The protein-protein interaction network exhibited hub targets of MXSGD, such as Heat shock protein 90, RAC-alpha serine/threonine-protein kinase, Transcription factor AP-1, Mitogen-activated protein kinase 1, Cellular tumor antigen p53, Vascular endothelial growth factor A, and Tumour necrosis factor. Gene Ontology functional enrichment analysis demonstrated that the biological processes altered within the body after taking MXSGD were closely related to the regulation of such processes as the acute inflammatory response, chemokine production, vascular permeability, response to oxygen radicals, oxidative stress-induced apoptosis, T cell differentiation involved in the immune response, immunoglobulin secretion, and extracellular matrix disassembly. KEGG enrichment analysis indicated that the targets of MXSGD were significantly enriched in inflammation-related pathways, immunomodulation-related pathways, and viral infection-related pathways. The therapeutic mechanisms of MXSGD on COVID-19 may primarily involve the following effects: reducing inflammation, suppressing cytokine storm, protecting the pulmonary alveolar-capillary barrier, alleviating pulmonary edema, regulating the immune response, and decreasing fever.


Asunto(s)
Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Medicina Tradicional China , Neumonía Viral/tratamiento farmacológico , COVID-19 , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/metabolismo , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Pandemias , Neumonía Viral/genética , Neumonía Viral/metabolismo , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA